
ND FTC Engineering Day

About Me

- B.S. in Mechanical Engineering from NDSU
- Design Engineer at Bobcat Co.
 - Mini Track Loader and Small Articulating Loader Sustaining
 - Take problems and develop solutions to ongoing field issues
 - Validate new sourced components

• Revise design for efficiency, customer improvement, and cost-savings activities

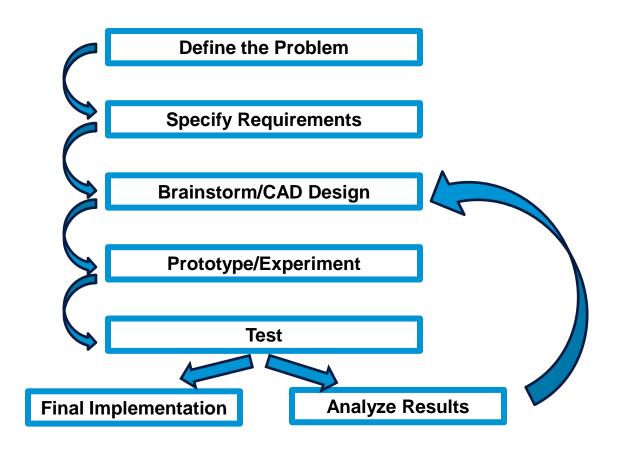
• Some attachment sustainment (snowblowers and landscape rakes)

Involved in FIRST Tech Challenge for 10 years

- Member of 9707 (2015-2019)
- Mentor of 17758 (2020-2022)
- Mentor of 20680 (2021-2022)
- Mentor of 9707 (2023-Present)

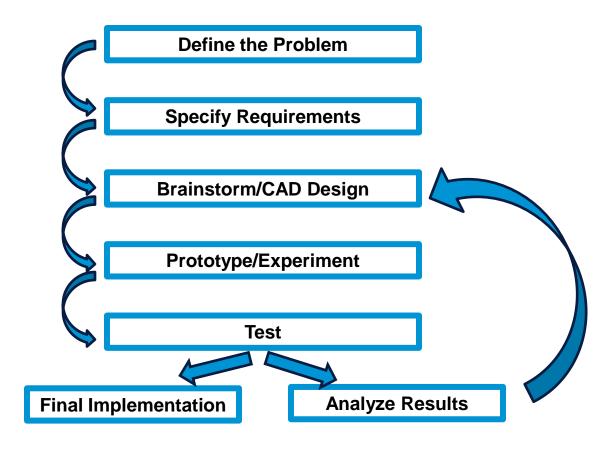
Why does what I say mean something?

As a Mentor:


- Judges' Award (x2)
- Finalist Alliance (x1)
- Innovate Award
- Winning Alliance (x4)
- Motivate Award
- Think Award
- Control Award (x3)
- Multitude of 2nds and 3rds in various awards

As a Student:

- Winning Alliance Captain
 - Advanced to Midwest Super Regionals with 5250
- Design Award (x2)
- Innovate Award



Engineering Design Process

- Define the problem: What are you trying to solve?
 What is the timeline?
- Specify requirements: What are the necessities for your proposed solution?
- Brainstorm/CAD Design: Draw or sketch a prototype on paper or in CAD.
- Prototype/Experiment: Put a first design together using physical materials.
- Test: Ensure you thoroughly test every part of your prototype to detect flaws.
- Analyze results: Examine what you learned from your tests to iterate successively.
- Final implementation: Polish and solidify a final design that won't change.

Engineering Design Process

Think Award Criteria		
Required	1	Team must submit a PORTFOLIO. The PORTFOLIO must include engineering content which includes at least one of the following: A. evidence of use of the engineering process B. lessons learned and implemented related to the design of their ROBOT, C. trade off analysis /cost benefit analysis, and/or D. mathematical analysis used to make design decisions.
Encouraged	2	Team PORTFOLIO may include information about resources which includes any number of the following examples: A. how the team learns from team mentors, and/or a development plan for team members to learn new skills, B. how the team recruited new people into FIRST, and/or C. how the team identified goals and tracked progress towards their goals throughout the season.
Encouraged	3	PORTFOLIO information is organized in a clear and intuitive manner
Control Award Criteria		
Required	1	Team must submit a PORTFOLIO. The PORTFOLIO must include all of the following: A. hardware and/or software control COMPONENTS on the ROBOT, B. which challenges each COMPONENT or system is intended to solve, and C. how does each COMPONENT or system work.
Required	2	Team must use one or more hardware or software solutions to improve ROBOT functionality by using external feedback and control.
Encouraged	3	The control solution(s) should work consistently during most MATCHES.
Encouraged	4	Team could discuss, describe, display, or document how the solution may consider reliability either through demonstrated effectiveness or identification of how the solution could be improved
Encouraged	5	Use of the engineering process to develop the control solutions (sensors, hardware and/or algorithms) used on the ROBOT includes lessons learned.

Example: FTC 9707 2024/25 Intake Claw

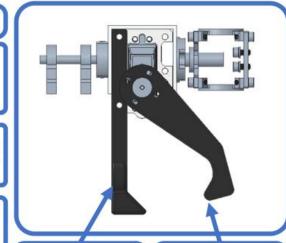
- Define the problem:
 - Pick up rectangular prisms with triangle cutouts out of the submersible and move to transfer mechanism
- Specify requirements:
 - Servo driven to reduce weight
 - Ability to rotate up and down to get to transfer
 - Efficient grab force speed or torque servo
 - Mostly COTS for easier implementation (GoBilda)
 - 3d printable claw with minimal support structure to produce enough spares with minimal material usage
 - Easily serviceable to replace parts as needed
 - Rotates to pickup various angled samples
- Brainstorm/CAD Design: Draw or sketch a prototype on paper or in CAD.
 - Pick and place robot
 - Skid steer grapples
 - Claw machine
 - **Scissors**

- Snowball maker
- Excavator thumb
- Vice / Clamp
- Fractal clamp

- Human hand
- Rock Picker by TerraClear
- Reach extender
- Combine Harvester

Design Process History

V1 - Tornado Claw Claw system that could rotate. Design based on Bobcat Log Grapple. It was difficult to grab samples due to hinge mechanism.


V2 - Single Arm Driven Servo Static claw and driven arm to grip with full triangles to grab samples. It was difficult to grab one sample at a time.

V3 - Improve Claw Shape Halved the triangle shaped area to the top half of the sample profile shape. Improved rounding. The static claw had reliability issues.

V4 (Current) - Metal Reinforcement Added stress absorbing metal plate to the back of the static claw.

Intake System

Static Claw

The static claw allows us to manipulate samples in the submersible. This claw does not move. The static claw is what allows our robot to quickly and effectively grab samples.

Our robot utilizes a rounded half triangle gripping claw which helps the claw roll over the samples in the submersible. This allows us to efficiently grab the sample we want to collect.

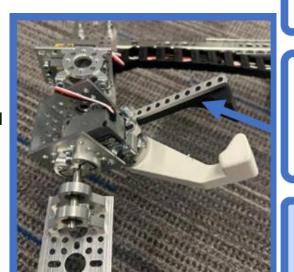
Improved Shape

Metal Backing for Static Claw

One of our largest learning lessons is force transferred from our drivetrain to our static claw. We broke quite a few static claws. We developed a metal backing to help protect the static arm from accidental contact.

Example: FTC 9707 2024/25 Intake Claw

- Prototype/Experiment:
 - First image is a rough prototype of a claw that rotates and picks up.
 - Bottom image ND Championship Intake Claw
- Test: Ensure you thoroughly test every part of your prototype to detect flaws.
 - Developed test plan record cycle times of robot
 - How long to grab from submersible?
 - How long to transfer? Is it consistent?
 - Durability? Clip on submersible to simulate fast grabbing
 - Can the sample shift in the claw causing issues with transfer?
- Analyze results:
 - First Claw Slow, lacked grip strength, transfer was inconsistent
 - Second Claw Removed degree of freedom hard to grab just one sample
 - Third Claw faster and easy to pick out samples. Reliability issues broke ~5 claws/hr
 - Final claw Metal backing prevented claws breaking, issue with overall speed (too much manipulation allowed), took time to move into place
 - Proposed improvements not implemented dual axis claw (more grip) increase servos to super speed servos, better radial load protection, make active intake like combine harvester
- Final implementation: Polish and solidify a final design that won't change.

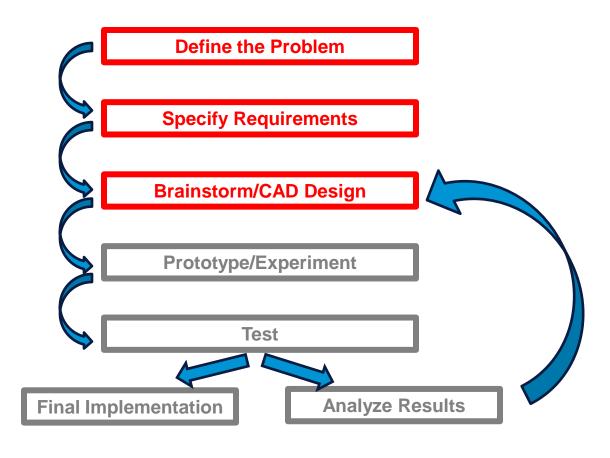


Design Process History

V1 - Tornado Claw

Claw system that could rotate. Design based on Bobcat Log Grapple. It was difficult to grab samples due to hinge mechanism.

V2 - Single Arm Driven Servo
Static claw and driven arm to grip with full triangles to grab samples. It was difficult to grab one sample at a time.


V3 - Improve Claw Shape Halved the triangle shaped area to the top half of the sample profile shape.

top half of the sample profile shape. Improved rounding. The static claw had reliability issues.

V4 (Current) - Metal Reinforcement

Added stress absorbing metal plate to the back of the static claw.

Engineering Design Process - 2025/26 Game Challenge (Launching)

- Define the problem: What are we trying to accomplish?
 - Move spherical objects from floor/human player area to deposit area
 - Completed by January 2026
- Specify requirements:
 - Spherical objects: 5-inch diameter
 - Height: 38.5 inches
 - Distance: up to 15 feet away
 - Size constraint: 18 x 18 x 18 inches
 - Electronic constraints: no more than 2 motors and 2 servos
 - Etc
- Brainstorm: Think of real-world examples. Remember "we don't need to reinvent the wheel"
 - Snowblowers
 - Basketball Rebounders
 - Baseball Pitching Machines
 - Catapults / Slingshots / Trebuchets
 - Dog tennis ball thrower

Resource Library

Official FTC Resources

- First Tech Challenge Season
 Materials
- First Tech Challenge
 Documentation
- First Tech Challenge QnA
- FTC BC Workshops
- FTC Sim
- FIRST Tech Challenge YouTube

CAD / CAD Tutorials

- Onshape CAD for Robotics
 Competitions
- Onshape Education Account
- Pulley Generator (HTD3 and HTD5)
- Autodesk Education Account

Mechanism Libraries

- Unofficial FRC
 Mechanism Encyclopedia
- FRC Designs
- <u>8644 Brainstormers</u> <u>Tips&Tricks</u>

Events and Scouting

- FTC Scout
- The Orange Alliance

Calculators

- JuliaDesignCalc
- ReCalc
- Thad's Every Calc

Programming

- Learn Java for FTC
- 9794 Wizards.exe Spell Books
- Block Programming Ref Manual

Biblical Level Resources

- Game Manual Zero
- Brogan M Pratt
- Engineering Portfolio Library

Vendors

- Vendor List
- GoBilda (25% FTC Team Discount)
- Metal (Bismarck)
- Metal (Fargo)